Nuprl Lemma : invertunion_wf

[A,B:Type]. ∀[x:A B].  (invertunion(x) ∈ A)


Proof




Definitions occuring in Statement :  invertunion: invertunion(x) uall: [x:A]. B[x] member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  invertunion: invertunion(x) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q prop:
Lemmas referenced :  equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut hypothesisEquality equalityTransitivity hypothesis equalitySymmetry thin unionEquality lambdaFormation unionElimination inrEquality inlEquality extract_by_obid sqequalHypSubstitution isectElimination dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[x:A  +  B].    (invertunion(x)  \mmember{}  B  +  A)



Date html generated: 2019_10_15-AM-11_07_06
Last ObjectModification: 2018_08_21-PM-01_58_53

Theory : general


Home Index