Nuprl Lemma : l-ordered-no_repeats
∀[T:Type]. ∀[as:T List]. ∀[R:T ⟶ T ⟶ ℙ].
  (no_repeats(T;as)) supposing (l-ordered(T;x,y.R[x;y];as) and (∀x:T. (¬R[x;x])))
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
no_repeats: no_repeats(T;l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
l-ordered: l-ordered(T;x,y.R[x; y];L)
Lemmas referenced : 
no_repeats_iff, 
equal_wf, 
l_before_wf, 
no_repeats_witness, 
l-ordered_wf, 
all_wf, 
not_wf, 
list_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
functionExtensionality, 
functionEquality, 
universeEquality, 
hyp_replacement, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination, 
rename
Latex:
\mforall{}[T:Type].  \mforall{}[as:T  List].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (no\_repeats(T;as))  supposing  (l-ordered(T;x,y.R[x;y];as)  and  (\mforall{}x:T.  (\mneg{}R[x;x])))
Date html generated:
2018_05_21-PM-07_39_36
Last ObjectModification:
2017_07_26-PM-05_13_53
Theory : general
Home
Index