Nuprl Lemma : nim-sum-0

[x:ℕ]. (nim-sum(x;0) x ∈ ℤ)


Proof




Definitions occuring in Statement :  nim-sum: nim-sum(x;y) nat: uall: [x:A]. B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q all: x:A. B[x] top: Top
Lemmas referenced :  equal_wf squash_wf true_wf nim-sum-com false_wf le_wf subtype_rel_self iff_weakening_equal nim_sum0_lemma nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality intEquality dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation setElimination rename imageMemberEquality baseClosed instantiate because_Cache independent_isectElimination productElimination independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[x:\mBbbN{}].  (nim-sum(x;0)  =  x)



Date html generated: 2018_05_21-PM-09_10_41
Last ObjectModification: 2018_05_19-PM-05_12_40

Theory : general


Home Index