Nuprl Lemma : nim-sum-0
∀[x:ℕ]. (nim-sum(x;0) = x ∈ ℤ)
Proof
Definitions occuring in Statement : 
nim-sum: nim-sum(x;y)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
, 
top: Top
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
nim-sum-com, 
false_wf, 
le_wf, 
subtype_rel_self, 
iff_weakening_equal, 
nim_sum0_lemma, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
intEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
instantiate, 
because_Cache, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[x:\mBbbN{}].  (nim-sum(x;0)  =  x)
Date html generated:
2018_05_21-PM-09_10_41
Last ObjectModification:
2018_05_19-PM-05_12_40
Theory : general
Home
Index