Nuprl Lemma : null-ite

[b:𝔹]. ∀[x,y:Top].  (null(if then else fi if then null(x) else null(y) fi )


Proof




Definitions occuring in Statement :  null: null(as) ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff prop:
Lemmas referenced :  top_wf bool_wf equal-wf-T-base assert_wf bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache baseClosed lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination independent_functionElimination equalityTransitivity equalitySymmetry dependent_functionElimination

Latex:
\mforall{}[b:\mBbbB{}].  \mforall{}[x,y:Top].    (null(if  b  then  x  else  y  fi  )  \msim{}  if  b  then  null(x)  else  null(y)  fi  )



Date html generated: 2018_05_21-PM-06_36_32
Last ObjectModification: 2017_07_26-PM-04_52_48

Theory : general


Home Index