Nuprl Lemma : null-ite
∀[b:𝔹]. ∀[x,y:Top].  (null(if b then x else y fi ) ~ if b then null(x) else null(y) fi )
Proof
Definitions occuring in Statement : 
null: null(as)
, 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
prop: ℙ
Lemmas referenced : 
top_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
baseClosed, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination
Latex:
\mforall{}[b:\mBbbB{}].  \mforall{}[x,y:Top].    (null(if  b  then  x  else  y  fi  )  \msim{}  if  b  then  null(x)  else  null(y)  fi  )
Date html generated:
2018_05_21-PM-06_36_32
Last ObjectModification:
2017_07_26-PM-04_52_48
Theory : general
Home
Index