Nuprl Lemma : p-conditional-to-p-first

[A,B:Type]. ∀[f,g:A ⟶ (B Top)].  ([f?g] p-first([f; g]) ∈ (A ⟶ (B Top)))


Proof




Definitions occuring in Statement :  p-conditional: [f?g] p-first: p-first(L) cons: [a b] nil: [] uall: [x:A]. B[x] top: Top function: x:A ⟶ B[x] union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T p-first: p-first(L) p-conditional: [f?g] all: x:A. B[x] top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] can-apply: can-apply(f;x) implies:  Q isl: isl(x) ifthenelse: if then else fi  btrue: tt bfalse: ff prop:
Lemmas referenced :  top_wf list_accum_cons_lemma list_accum_nil_lemma equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality hypothesisEquality hypothesis functionEquality cumulativity unionEquality extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin axiomEquality because_Cache universeEquality dependent_functionElimination voidElimination voidEquality applyEquality lambdaFormation unionElimination equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[f,g:A  {}\mrightarrow{}  (B  +  Top)].    ([f?g]  =  p-first([f;  g]))



Date html generated: 2017_10_01-AM-09_14_10
Last ObjectModification: 2017_07_26-PM-04_49_21

Theory : general


Home Index