Nuprl Lemma : p-conditional_wf

[A,B:Type]. ∀[f,g:A ⟶ (B Top)].  ([f?g] ∈ A ⟶ (B Top))


Proof




Definitions occuring in Statement :  p-conditional: [f?g] uall: [x:A]. B[x] top: Top member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  p-conditional: [f?g] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] top: Top
Lemmas referenced :  ifthenelse_wf can-apply_wf subtype_rel_dep_function top_wf subtype_rel_union
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality unionEquality hypothesis because_Cache independent_isectElimination lambdaFormation isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f,g:A  {}\mrightarrow{}  (B  +  Top)].    ([f?g]  \mmember{}  A  {}\mrightarrow{}  (B  +  Top))



Date html generated: 2016_05_15-PM-03_30_31
Last ObjectModification: 2015_12_27-PM-01_10_35

Theory : general


Home Index