Nuprl Lemma : p-graph_wf
∀[A,B:Type]. ∀[f:A ⟶ (B + Top)].  (p-graph(B;f) ∈ A ⟶ B ⟶ ℙ)
Proof
Definitions occuring in Statement : 
p-graph: p-graph(A;f)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
p-graph: p-graph(A;f)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
Lemmas referenced : 
assert_wf, 
can-apply_wf, 
subtype_rel_union, 
top_wf, 
equal_wf, 
do-apply_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
unionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  (B  +  Top)].    (p-graph(B;f)  \mmember{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2018_05_21-PM-07_36_24
Last ObjectModification:
2017_07_26-PM-05_10_26
Theory : general
Home
Index