Nuprl Lemma : p-inject_wf

[A,B:Type]. ∀[f:A ⟶ (B Top)].  (p-inject(A;B;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  p-inject: p-inject(A;B;f) uall: [x:A]. B[x] top: Top prop: member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  p-inject: p-inject(A;B;f) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s]
Lemmas referenced :  all_wf assert_wf can-apply_wf equal_wf do-apply_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality because_Cache functionEquality functionExtensionality applyEquality hypothesis independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry unionEquality isect_memberEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  (B  +  Top)].    (p-inject(A;B;f)  \mmember{}  \mBbbP{})



Date html generated: 2018_05_21-PM-06_32_54
Last ObjectModification: 2017_07_26-PM-04_51_55

Theory : general


Home Index