Nuprl Lemma : p-restrict_wf
∀[A,B:Type]. ∀[f:A ⟶ (B + Top)]. ∀[P:A ⟶ ℙ]. ∀[p:∀x:A. Dec(P[x])].  (p-restrict(f;p) ∈ A ⟶ (B + Top))
Proof
Definitions occuring in Statement : 
p-restrict: p-restrict(f;p)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
p-restrict: p-restrict(f;p)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
p-compose_wf, 
p-filter_wf, 
all_wf, 
decidable_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality, 
unionEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[p:\mforall{}x:A.  Dec(P[x])].
    (p-restrict(f;p)  \mmember{}  A  {}\mrightarrow{}  (B  +  Top))
Date html generated:
2016_05_15-PM-03_31_14
Last ObjectModification:
2015_12_27-PM-01_10_56
Theory : general
Home
Index