Nuprl Lemma : p-filter_wf
∀[T:Type]. ∀[P:T ⟶ ℙ]. ∀[f:∀x:T. Dec(P[x])].  (p-filter(f) ∈ T ⟶ (T + Top))
Proof
Definitions occuring in Statement : 
p-filter: p-filter(f)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
p-filter: p-filter(f)
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
top: Top
Lemmas referenced : 
or_wf, 
not_wf, 
subtype_rel_self, 
top_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
instantiate, 
universeEquality, 
unionElimination, 
inlEquality, 
inrEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
functionEquality, 
because_Cache, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f:\mforall{}x:T.  Dec(P[x])].    (p-filter(f)  \mmember{}  T  {}\mrightarrow{}  (T  +  Top))
Date html generated:
2019_10_15-AM-11_07_30
Last ObjectModification:
2018_08_21-PM-01_59_01
Theory : general
Home
Index