Nuprl Lemma : power-sum_wf
∀[n:ℕ]. ∀[x:ℤ]. ∀[a:ℕn ⟶ ℤ].  (Σi<n.a[i]*x^i ∈ ℤ)
Proof
Definitions occuring in Statement : 
power-sum: Σi<n.a[i]*x^i
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
power-sum: Σi<n.a[i]*x^i
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
sum_wf, 
exp_wf2, 
int_seg_subtype_nat, 
false_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
multiplyEquality, 
applyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
intEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbZ{}].  \mforall{}[a:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}i<n.a[i]*x\^{}i  \mmember{}  \mBbbZ{})
Date html generated:
2016_05_15-PM-06_27_08
Last ObjectModification:
2015_12_27-PM-00_01_28
Theory : general
Home
Index