Nuprl Lemma : power-sum_wf

[n:ℕ]. ∀[x:ℤ]. ∀[a:ℕn ⟶ ℤ].  i<n.a[i]*x^i ∈ ℤ)


Proof




Definitions occuring in Statement :  power-sum: Σi<n.a[i]*x^i int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T power-sum: Σi<n.a[i]*x^i so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop:
Lemmas referenced :  sum_wf exp_wf2 int_seg_subtype_nat false_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality multiplyEquality applyEquality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation lambdaFormation hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality intEquality isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbZ{}].  \mforall{}[a:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}i<n.a[i]*x\^{}i  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_15-PM-06_27_08
Last ObjectModification: 2015_12_27-PM-00_01_28

Theory : general


Home Index