Nuprl Lemma : power-sum_wf
∀[n:ℕ]. ∀[x:ℤ]. ∀[a:ℕn ⟶ ℤ]. (Σi<n.a[i]*x^i ∈ ℤ)
Proof
Definitions occuring in Statement :
power-sum: Σi<n.a[i]*x^i
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
power-sum: Σi<n.a[i]*x^i
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
uimplies: b supposing a
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
Lemmas referenced :
sum_wf,
exp_wf2,
int_seg_subtype_nat,
false_wf,
int_seg_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
multiplyEquality,
applyEquality,
natural_numberEquality,
setElimination,
rename,
independent_isectElimination,
independent_pairFormation,
lambdaFormation,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
intEquality,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[x:\mBbbZ{}]. \mforall{}[a:\mBbbN{}n {}\mrightarrow{} \mBbbZ{}]. (\mSigma{}i<n.a[i]*x\^{}i \mmember{} \mBbbZ{})
Date html generated:
2016_05_15-PM-06_27_08
Last ObjectModification:
2015_12_27-PM-00_01_28
Theory : general
Home
Index