Nuprl Lemma : primefactors_wf

n:{2...}. (primefactors(n) ∈ {factors:{m:{2...}| prime(m)}  List| = Π(factors)  ∈ ℤ)


Proof




Definitions occuring in Statement :  primefactors: primefactors(n) mul-list: Π(ns)  prime: prime(a) list: List int_upper: {i...} all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T primefactors: primefactors(n) uall: [x:A]. B[x] so_lambda: λ2x.t[x] int_upper: {i...} prop: subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s] implies:  Q sq_exists: x:A [B[x]]
Lemmas referenced :  prime-factors3 all_wf int_upper_wf sq_exists_wf list_wf prime_wf equal_wf mul-list_wf subtype_rel_list
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin instantiate extract_by_obid hypothesis introduction sqequalHypSubstitution isectElimination natural_numberEquality sqequalRule lambdaEquality setEquality because_Cache setElimination rename intEquality hypothesisEquality applyEquality independent_isectElimination functionExtensionality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
\mforall{}n:\{2...\}.  (primefactors(n)  \mmember{}  \{factors:\{m:\{2...\}|  prime(m)\}    List|  n  =  \mPi{}(factors)  \}  )



Date html generated: 2018_05_21-PM-08_13_30
Last ObjectModification: 2018_05_19-PM-04_55_09

Theory : general


Home Index