Nuprl Lemma : primefactors_wf
∀n:{2...}. (primefactors(n) ∈ {factors:{m:{2...}| prime(m)}  List| n = Π(factors)  ∈ ℤ} )
Proof
Definitions occuring in Statement : 
primefactors: primefactors(n), 
mul-list: Π(ns) , 
prime: prime(a), 
list: T List, 
int_upper: {i...}, 
all: ∀x:A. B[x], 
member: t ∈ T, 
set: {x:A| B[x]} , 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
primefactors: primefactors(n), 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
int_upper: {i...}, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
so_apply: x[s], 
implies: P ⇒ Q, 
sq_exists: ∃x:A [B[x]]
Lemmas referenced : 
prime-factors3, 
all_wf, 
int_upper_wf, 
sq_exists_wf, 
list_wf, 
prime_wf, 
equal_wf, 
mul-list_wf, 
subtype_rel_list
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
introduction, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality, 
setEquality, 
because_Cache, 
setElimination, 
rename, 
intEquality, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}n:\{2...\}.  (primefactors(n)  \mmember{}  \{factors:\{m:\{2...\}|  prime(m)\}    List|  n  =  \mPi{}(factors)  \}  )
Date html generated:
2018_05_21-PM-08_13_30
Last ObjectModification:
2018_05_19-PM-04_55_09
Theory : general
Home
Index