Nuprl Lemma : prime-factors3

n:{2...}. (∃factors:{m:{2...}| prime(m)}  List [(n = Π(factors)  ∈ ℤ)])


This theorem is one of freek's list of 100 theorems



Proof




Definitions occuring in Statement :  mul-list: Π(ns)  prime: prime(a) list: List int_upper: {i...} all: x:A. B[x] sq_exists: x:A [B[x]] set: {x:A| B[x]}  natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T iseg_product_rem: iseg_product_rem(i;j;k) subtract: m divide: n ÷ m it: nil: [] cons: [a b] so_apply: x[s1;s2] genrec-ap: genrec-ap pi1: fst(t) prime-factors2 decidable__proper_divisor decidable__le decidable__equal_int any: any x iroot-property divisor-in-range decidable__and decidable__not decidable__less_than' decidable__int_equal uniform-comp-nat-induction decidable__lt rem_bounds_1 int_seg_properties decidable__implies decidable__false decidable__squash decidable_functionality squash_elim sq_stable_from_decidable iff_preserves_decidability sq_stable__from_stable stable__from_decidable uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: or: P ∨ Q squash: T so_lambda: λ2y.t[x; y]
Lemmas referenced :  prime-factors2 lifting-strict-decide istype-void strict4-decide lifting-strict-less lifting-strict-callbyvalue lifting-strict-int_eq lifting-strict-spread has-value_wf_base istype-base is-exception_wf istype-universe decidable__proper_divisor decidable__le decidable__equal_int iroot-property divisor-in-range decidable__and decidable__not decidable__less_than' decidable__int_equal uniform-comp-nat-induction decidable__lt rem_bounds_1 int_seg_properties decidable__implies decidable__false decidable__squash decidable_functionality squash_elim sq_stable_from_decidable iff_preserves_decidability sq_stable__from_stable stable__from_decidable
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination independent_pairFormation lambdaFormation_alt callbyvalueCallbyvalue callbyvalueReduce universeIsType baseApply closedConclusion hypothesisEquality callbyvalueExceptionCases inrFormation_alt imageMemberEquality imageElimination exceptionSqequal inlFormation_alt

Latex:
\mforall{}n:\{2...\}.  (\mexists{}factors:\{m:\{2...\}|  prime(m)\}    List  [(n  =  \mPi{}(factors)  )])



Date html generated: 2019_10_15-AM-11_18_45
Last ObjectModification: 2019_06_26-PM-03_38_54

Theory : general


Home Index