Nuprl Lemma : decidable__proper_divisor
∀n:{2...}. Dec(∃n1:ℤ [(n1 < n ∧ (2 ≤ n1) ∧ (n1 | n))])
Proof
Definitions occuring in Statement : 
divides: b | a
, 
int_upper: {i...}
, 
less_than: a < b
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
prop: ℙ
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
guard: {T}
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
sq_exists: ∃x:A [B[x]]
, 
subtype_rel: A ⊆r B
, 
divides: b | a
, 
sq_type: SQType(T)
, 
iff: P 
⇐⇒ Q
, 
nequal: a ≠ b ∈ T 
, 
true: True
, 
int_nzero: ℤ-o
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
less_than: a < b
, 
subtract: n - m
, 
primrec: primrec(n;b;c)
, 
exp: i^n
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
rev_uimplies: rev_uimplies(P;Q)
, 
gt: i > j
Lemmas referenced : 
decidable__le, 
istype-int_upper, 
decidable__equal_int, 
sq_exists_wf, 
divides_wf, 
le_wf, 
less_than_wf, 
istype-false, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
int_upper_properties, 
int_subtype_base, 
set_subtype_base, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
subtype_base_sq, 
int_formula_prop_le_lemma, 
intformle_wf, 
nequal_wf, 
divides_iff_rem_zero, 
nat_wf, 
iroot_wf, 
istype-less_than, 
istype-le, 
add_nat_wf, 
nat_properties, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
set-value-type, 
equal_wf, 
int-value-type, 
upper_subtype_nat, 
iroot-property, 
exp_wf2, 
subtract-1-ge-0, 
member-less_than, 
ge_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
mul-distributes, 
mul-distributes-right, 
add-associates, 
mul-commutes, 
one-mul, 
add-swap, 
add-commutes, 
two-mul, 
zero-mul, 
zero-add, 
primrec1_lemma, 
primrec-unroll, 
mul-associates, 
mul-swap, 
add-mul-special, 
mul_preserves_le, 
int_formual_prop_imp_lemma, 
intformimplies_wf, 
le_witness_for_triv, 
primrec-wf2, 
not_wf, 
divisor-in-range, 
less_than_functionality, 
add_functionality_wrt_le, 
multiply_functionality_wrt_le, 
le_weakening, 
mul_bounds_1a, 
pos_mul_arg_bounds
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
unionElimination, 
isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
inhabitedIsType, 
productEquality, 
intEquality, 
functionIsType, 
because_Cache, 
productIsType, 
universeIsType, 
independent_pairFormation, 
sqequalRule, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
dependent_set_memberFormation_alt, 
inlFormation_alt, 
applyEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
equalityIsType4, 
cumulativity, 
instantiate, 
inrFormation_alt, 
productElimination, 
dependent_set_memberEquality_alt, 
promote_hyp, 
addEquality, 
Error :memTop, 
applyLambdaEquality, 
pointwiseFunctionality, 
equalityIstype, 
cutEval, 
imageMemberEquality, 
multiplyEquality, 
equalityIsType1, 
imageElimination, 
functionIsTypeImplies, 
intWeakElimination, 
minusEquality, 
isect_memberFormation_alt, 
isectIsType, 
unionIsType, 
setIsType, 
isectEquality, 
unionEquality
Latex:
\mforall{}n:\{2...\}.  Dec(\mexists{}n1:\mBbbZ{}  [(n1  <  n  \mwedge{}  (2  \mleq{}  n1)  \mwedge{}  (n1  |  n))])
Date html generated:
2020_05_20-AM-08_14_07
Last ObjectModification:
2020_01_04-PM-11_10_56
Theory : general
Home
Index