Nuprl Lemma : decidable__proper_divisor

n:{2...}. Dec(∃n1:ℤ [(n1 < n ∧ (2 ≤ n1) ∧ (n1 n))])


Proof




Definitions occuring in Statement :  divides: a int_upper: {i...} less_than: a < b decidable: Dec(P) le: A ≤ B all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T int_upper: {i...} decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] so_apply: x[s] so_lambda: λ2x.t[x] less_than': less_than'(a;b) le: A ≤ B prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a guard: {T} cand: c∧ B and: P ∧ Q sq_exists: x:A [B[x]] subtype_rel: A ⊆B divides: a sq_type: SQType(T) iff: ⇐⇒ Q nequal: a ≠ b ∈  true: True int_nzero: -o nat: nat_plus: + ge: i ≥  uiff: uiff(P;Q) squash: T less_than: a < b subtract: m primrec: primrec(n;b;c) exp: i^n bfalse: ff ifthenelse: if then else fi  lt_int: i <j int_seg: {i..j-} lelt: i ≤ j < k rev_uimplies: rev_uimplies(P;Q) gt: i > j
Lemmas referenced :  decidable__le istype-int_upper decidable__equal_int sq_exists_wf divides_wf le_wf less_than_wf istype-false int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int intformeq_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt int_upper_properties int_subtype_base set_subtype_base int_term_value_mul_lemma itermMultiply_wf subtype_base_sq int_formula_prop_le_lemma intformle_wf nequal_wf divides_iff_rem_zero nat_wf iroot_wf istype-less_than istype-le add_nat_wf nat_properties add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf set-value-type equal_wf int-value-type upper_subtype_nat iroot-property exp_wf2 subtract-1-ge-0 member-less_than ge_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf mul-distributes mul-distributes-right add-associates mul-commutes one-mul add-swap add-commutes two-mul zero-mul zero-add primrec1_lemma primrec-unroll mul-associates mul-swap add-mul-special mul_preserves_le int_formual_prop_imp_lemma intformimplies_wf le_witness_for_triv primrec-wf2 not_wf divisor-in-range less_than_functionality add_functionality_wrt_le multiply_functionality_wrt_le le_weakening mul_bounds_1a pos_mul_arg_bounds
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality unionElimination isectElimination equalitySymmetry equalityTransitivity inhabitedIsType productEquality intEquality functionIsType because_Cache productIsType universeIsType independent_pairFormation sqequalRule voidElimination isect_memberEquality_alt int_eqEquality lambdaEquality_alt dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination dependent_set_memberFormation_alt inlFormation_alt applyEquality baseClosed closedConclusion baseApply equalityIsType4 cumulativity instantiate inrFormation_alt productElimination dependent_set_memberEquality_alt promote_hyp addEquality Error :memTop,  applyLambdaEquality pointwiseFunctionality equalityIstype cutEval imageMemberEquality multiplyEquality equalityIsType1 imageElimination functionIsTypeImplies intWeakElimination minusEquality isect_memberFormation_alt isectIsType unionIsType setIsType isectEquality unionEquality

Latex:
\mforall{}n:\{2...\}.  Dec(\mexists{}n1:\mBbbZ{}  [(n1  <  n  \mwedge{}  (2  \mleq{}  n1)  \mwedge{}  (n1  |  n))])



Date html generated: 2020_05_20-AM-08_14_07
Last ObjectModification: 2020_01_04-PM-11_10_56

Theory : general


Home Index