Nuprl Lemma : divisor-in-range

n:{2...}
  ∀[k:ℕ]
    ∀i:{1...}. ∀j:{i..i k-}.
      (∃m:ℤ [(m < n ∧ (2 ≤ m) ∧ (m n))]) ∨ (∃m:ℤ [((2 ≤ m) ∧ (i ≤ m) ∧ (m ≤ j) ∧ (m n))])) supposing j < n


Proof




Definitions occuring in Statement :  divides: a int_upper: {i...} int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] sq_exists: x:A [B[x]] not: ¬A or: P ∨ Q and: P ∧ Q add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T int_upper: {i...} nat: uimplies: supposing a int_seg: {i..j-} prop: and: P ∧ Q so_apply: x[s] implies:  Q nat_plus: + le: A ≤ B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) subtype_rel: A ⊆B less_than': less_than'(a;b) true: True sq_stable: SqStable(P) squash: T subtract: m lelt: i ≤ j < k guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top sq_type: SQType(T) sq_exists: x:A [B[x]] gcd: gcd(a;b) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈  cand: c∧ B gcd_p: GCD(a;b;y) iseg_product: iseg_product(i;j) int_nzero: -o less_than: a < b
Lemmas referenced :  uniform-comp-nat-induction all_wf int_upper_wf int_seg_wf isect_wf less_than_wf or_wf sq_exists_wf le_wf divides_wf istype-int not_wf nat_wf member-less_than iseg_product_rem_wf decidable__lt istype-false not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel int_seg_subtype_nat decidable__le not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul minus-one-mul-top add-associates int_seg_properties nat_properties int_upper_properties full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma set-value-type equal_wf int-value-type better-gcd_wf subtype_base_sq int_subtype_base better-gcd-gcd upper_subtype_nat iseg_product_wf eq_int_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert set_subtype_base bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int gcd_wf istype-universe iseg_product_rem_property iff_weakening_equal rem_rem_to_rem not-equal-2 gcd_com gcd_sat_pred combinations-step subtract_wf itermSubtract_wf int_term_value_subtract_lemma lelt_wf decidable__equal_int itermMultiply_wf int_term_value_mul_lemma divisors_bound gcd-non-neg gcd_is_divisor_2 squash_wf true_wf subtype_rel_self div_rem_sum nequal_wf rem_bounds_1 add-is-int-iff multiply-is-int-iff false_wf gcd-positive divides-combinations pdivisor_bound one_divs_any
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality_alt natural_numberEquality hypothesis setElimination rename because_Cache addEquality intEquality productEquality hypothesisEquality universeIsType independent_functionElimination isect_memberFormation_alt independent_isectElimination dependent_set_memberEquality_alt productElimination dependent_functionElimination unionElimination independent_pairFormation voidElimination applyEquality imageMemberEquality baseClosed imageElimination minusEquality approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt productIsType cutEval equalityTransitivity equalitySymmetry equalityIsType1 inhabitedIsType instantiate cumulativity isectIsType functionIsType unionIsType equalityElimination equalityIsType2 baseApply closedConclusion promote_hyp universeEquality remainderEquality inlFormation_alt dependent_set_memberFormation_alt equalityIsType4 divideEquality pointwiseFunctionality inrFormation_alt applyLambdaEquality

Latex:
\mforall{}n:\{2...\}
    \mforall{}[k:\mBbbN{}]
        \mforall{}i:\{1...\}.  \mforall{}j:\{i..i  +  k\msupminus{}\}.
            (\mexists{}m:\mBbbZ{}  [(m  <  n  \mwedge{}  (2  \mleq{}  m)  \mwedge{}  (m  |  n))])  \mvee{}  (\mneg{}(\mexists{}m:\mBbbZ{}  [((2  \mleq{}  m)  \mwedge{}  (i  \mleq{}  m)  \mwedge{}  (m  \mleq{}  j)  \mwedge{}  (m  |  n))])) 
            supposing  j  <  n



Date html generated: 2019_10_15-AM-11_17_39
Last ObjectModification: 2018_10_09-PM-02_12_13

Theory : general


Home Index