Nuprl Lemma : divisor-in-range
∀n:{2...}
  ∀[k:ℕ]
    ∀i:{1...}. ∀j:{i..i + k-}.
      (∃m:ℤ [(m < n ∧ (2 ≤ m) ∧ (m | n))]) ∨ (¬(∃m:ℤ [((2 ≤ m) ∧ (i ≤ m) ∧ (m ≤ j) ∧ (m | n))])) supposing j < n
Proof
Definitions occuring in Statement : 
divides: b | a
, 
int_upper: {i...}
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
int_upper: {i...}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
true: True
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
subtract: n - m
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
sq_type: SQType(T)
, 
sq_exists: ∃x:A [B[x]]
, 
gcd: gcd(a;b)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
cand: A c∧ B
, 
gcd_p: GCD(a;b;y)
, 
iseg_product: iseg_product(i;j)
, 
int_nzero: ℤ-o
, 
less_than: a < b
Lemmas referenced : 
uniform-comp-nat-induction, 
all_wf, 
int_upper_wf, 
int_seg_wf, 
isect_wf, 
less_than_wf, 
or_wf, 
sq_exists_wf, 
le_wf, 
divides_wf, 
istype-int, 
not_wf, 
nat_wf, 
member-less_than, 
iseg_product_rem_wf, 
decidable__lt, 
istype-false, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
int_seg_subtype_nat, 
decidable__le, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add-associates, 
int_seg_properties, 
nat_properties, 
int_upper_properties, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
set-value-type, 
equal_wf, 
int-value-type, 
better-gcd_wf, 
subtype_base_sq, 
int_subtype_base, 
better-gcd-gcd, 
upper_subtype_nat, 
iseg_product_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
set_subtype_base, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
gcd_wf, 
istype-universe, 
iseg_product_rem_property, 
iff_weakening_equal, 
rem_rem_to_rem, 
not-equal-2, 
gcd_com, 
gcd_sat_pred, 
combinations-step, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
lelt_wf, 
decidable__equal_int, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
divisors_bound, 
gcd-non-neg, 
gcd_is_divisor_2, 
squash_wf, 
true_wf, 
subtype_rel_self, 
div_rem_sum, 
nequal_wf, 
rem_bounds_1, 
add-is-int-iff, 
multiply-is-int-iff, 
false_wf, 
gcd-positive, 
divides-combinations, 
pdivisor_bound, 
one_divs_any
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality_alt, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
because_Cache, 
addEquality, 
intEquality, 
productEquality, 
hypothesisEquality, 
universeIsType, 
independent_functionElimination, 
isect_memberFormation_alt, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
minusEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
productIsType, 
cutEval, 
equalityTransitivity, 
equalitySymmetry, 
equalityIsType1, 
inhabitedIsType, 
instantiate, 
cumulativity, 
isectIsType, 
functionIsType, 
unionIsType, 
equalityElimination, 
equalityIsType2, 
baseApply, 
closedConclusion, 
promote_hyp, 
universeEquality, 
remainderEquality, 
inlFormation_alt, 
dependent_set_memberFormation_alt, 
equalityIsType4, 
divideEquality, 
pointwiseFunctionality, 
inrFormation_alt, 
applyLambdaEquality
Latex:
\mforall{}n:\{2...\}
    \mforall{}[k:\mBbbN{}]
        \mforall{}i:\{1...\}.  \mforall{}j:\{i..i  +  k\msupminus{}\}.
            (\mexists{}m:\mBbbZ{}  [(m  <  n  \mwedge{}  (2  \mleq{}  m)  \mwedge{}  (m  |  n))])  \mvee{}  (\mneg{}(\mexists{}m:\mBbbZ{}  [((2  \mleq{}  m)  \mwedge{}  (i  \mleq{}  m)  \mwedge{}  (m  \mleq{}  j)  \mwedge{}  (m  |  n))])) 
            supposing  j  <  n
Date html generated:
2019_10_15-AM-11_17_39
Last ObjectModification:
2018_10_09-PM-02_12_13
Theory : general
Home
Index