Nuprl Lemma : iseg_product_rem_property
∀[k,j:ℕ]. ∀[i:ℕj + 1].  iseg_product_rem(i;j;k) = (iseg_product(i;j) rem k) ∈ ℤ supposing 1 < k
Proof
Definitions occuring in Statement : 
iseg_product_rem: iseg_product_rem(i;j;k)
, 
iseg_product: iseg_product(i;j)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
iseg_product: iseg_product(i;j)
, 
iseg_product_rem: iseg_product_rem(i;j;k)
, 
combinations: C(n;m)
, 
prop: ℙ
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
int_seg: {i..j-}
, 
guard: {T}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
Lemmas referenced : 
less_than_wf, 
int_seg_wf, 
nat_wf, 
combinations_aux_rem_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
less-iff-le, 
add_functionality_wrt_le, 
add-swap, 
add-commutes, 
add-associates, 
zero-add, 
le-add-cancel, 
subtract_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
one-rem, 
equal_wf, 
squash_wf, 
true_wf, 
combinations_aux_rem_property, 
iff_weakening_equal, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
intEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
voidEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[k,j:\mBbbN{}].  \mforall{}[i:\mBbbN{}j  +  1].    iseg\_product\_rem(i;j;k)  =  (iseg\_product(i;j)  rem  k)  supposing  1  <  k
Date html generated:
2018_05_21-PM-08_11_14
Last ObjectModification:
2017_07_26-PM-05_46_40
Theory : general
Home
Index