Nuprl Lemma : iseg_product_rem_property

[k,j:ℕ]. ∀[i:ℕ1].  iseg_product_rem(i;j;k) (iseg_product(i;j) rem k) ∈ ℤ supposing 1 < k


Proof




Definitions occuring in Statement :  iseg_product_rem: iseg_product_rem(i;j;k) iseg_product: iseg_product(i;j) int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] remainder: rem m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a iseg_product: iseg_product(i;j) iseg_product_rem: iseg_product_rem(i;j;k) combinations: C(n;m) prop: nat: nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True int_seg: {i..j-} guard: {T} ge: i ≥  lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] squash: T
Lemmas referenced :  less_than_wf int_seg_wf nat_wf combinations_aux_rem_wf decidable__lt false_wf not-lt-2 less-iff-le add_functionality_wrt_le add-swap add-commutes add-associates zero-add le-add-cancel subtract_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf one-rem equal_wf squash_wf true_wf combinations_aux_rem_property iff_weakening_equal nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry addEquality intEquality dependent_set_memberEquality dependent_functionElimination unionElimination independent_pairFormation lambdaFormation voidElimination productElimination independent_functionElimination independent_isectElimination applyEquality lambdaEquality voidEquality dependent_pairFormation int_eqEquality computeAll imageElimination universeEquality imageMemberEquality baseClosed

Latex:
\mforall{}[k,j:\mBbbN{}].  \mforall{}[i:\mBbbN{}j  +  1].    iseg\_product\_rem(i;j;k)  =  (iseg\_product(i;j)  rem  k)  supposing  1  <  k



Date html generated: 2018_05_21-PM-08_11_14
Last ObjectModification: 2017_07_26-PM-05_46_40

Theory : general


Home Index