Nuprl Lemma : iseg_product_wf

[j:ℕ]. ∀[i:ℕ1].  (iseg_product(i;j) ∈ ℕ)


Proof




Definitions occuring in Statement :  iseg_product: iseg_product(i;j) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iseg_product: iseg_product(i;j) nat: int_seg: {i..j-} guard: {T} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop:
Lemmas referenced :  nat_wf int_seg_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_properties subtract_wf combinations_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality addEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality equalityTransitivity equalitySymmetry because_Cache

Latex:
\mforall{}[j:\mBbbN{}].  \mforall{}[i:\mBbbN{}j  +  1].    (iseg\_product(i;j)  \mmember{}  \mBbbN{})



Date html generated: 2016_05_15-PM-06_01_13
Last ObjectModification: 2016_01_16-PM-00_39_02

Theory : general


Home Index