Nuprl Lemma : iseg_product_rem_wf

[k:ℕ+]. ∀[j:ℕ]. ∀[i:ℕ1].  (iseg_product_rem(i;j;k) ∈ ℕ)


Proof




Definitions occuring in Statement :  iseg_product_rem: iseg_product_rem(i;j;k) int_seg: {i..j-} nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iseg_product_rem: iseg_product_rem(i;j;k) nat: int_seg: {i..j-} guard: {T} nat_plus: + ge: i ≥  lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  nat_plus_wf nat_wf int_seg_wf false_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties nat_properties int_seg_properties subtract_wf combinations_aux_rem_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality addEquality setElimination rename hypothesis natural_numberEquality productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll lambdaFormation because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[j:\mBbbN{}].  \mforall{}[i:\mBbbN{}j  +  1].    (iseg\_product\_rem(i;j;k)  \mmember{}  \mBbbN{})



Date html generated: 2016_05_15-PM-06_02_12
Last ObjectModification: 2016_01_16-PM-00_40_08

Theory : general


Home Index