Nuprl Lemma : prime-factors2
∀n:{2...}. (∃factors:{m:{2...}| prime(m)}  List [(n = Π(factors)  ∈ ℤ)])
Proof
Definitions occuring in Statement : 
mul-list: Π(ns) 
, 
prime: prime(a)
, 
list: T List
, 
int_upper: {i...}
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
int_upper: {i...}
, 
sq_exists: ∃x:A [B[x]]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
less_than: a < b
, 
squash: ↓T
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
less_than': less_than'(a;b)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
atomic: atomic(a)
, 
cand: A c∧ B
, 
mul-list: Π(ns) 
Lemmas referenced : 
int_seg_wf, 
list_wf, 
int_upper_wf, 
prime_wf, 
istype-int, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
list_subtype_base, 
le_wf, 
istype-int_upper, 
natrec_wf_intseg, 
sq_exists_wf, 
equal-wf-base, 
subtype_rel_function, 
subtype_rel_self, 
decidable__proper_divisor, 
divide_wfa, 
int_upper_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
nequal_wf, 
set-value-type, 
equal_wf, 
int-value-type, 
istype-le, 
istype-less_than, 
divides_iff_div_exact, 
subtype_base_sq, 
div_bounds_1, 
upper_subtype_nat, 
istype-false, 
decidable__lt, 
intformnot_wf, 
intformless_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
decidable__equal_int, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
decidable__le, 
mul_preserves_le, 
merge-int_wf, 
squash_wf, 
true_wf, 
istype-universe, 
mul-list-merge, 
subtype_rel_list, 
iff_weakening_equal, 
mul-list_wf, 
multiply-is-int-iff, 
false_wf, 
cons_wf, 
nil_wf, 
atomic_imp_prime, 
assoced_wf, 
reducible_wf, 
assoced_nelim, 
reducible-nat, 
less_than_wf, 
divides_wf, 
reduce_cons_lemma, 
reduce_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
sqequalRule, 
functionIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
setIsType, 
setEquality, 
productElimination, 
equalityIstype, 
applyEquality, 
intEquality, 
lambdaEquality_alt, 
imageElimination, 
independent_isectElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
inhabitedIsType, 
sqequalBase, 
equalitySymmetry, 
because_Cache, 
functionExtensionality, 
dependent_functionElimination, 
unionElimination, 
dependent_set_memberEquality_alt, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
cutEval, 
equalityTransitivity, 
productIsType, 
instantiate, 
cumulativity, 
promote_hyp, 
dependent_set_memberFormation_alt, 
equalityIsType4, 
universeEquality, 
imageMemberEquality, 
multiplyEquality, 
divideEquality, 
pointwiseFunctionality
Latex:
\mforall{}n:\{2...\}.  (\mexists{}factors:\{m:\{2...\}|  prime(m)\}    List  [(n  =  \mPi{}(factors)  )])
Date html generated:
2020_05_20-AM-08_14_23
Last ObjectModification:
2019_11_27-PM-01_46_06
Theory : general
Home
Index