Nuprl Lemma : natrec_wf_intseg

[k:ℤ]. ∀[T:{k...} ⟶ Type]. ∀[g:n:{k...} ⟶ (m:{k..n-} ⟶ T[m]) ⟶ T[n]].  (letrec f(n)=g[n;f] in f ∈ n:{k...} ⟶ T[n])


Proof




Definitions occuring in Statement :  natrec: natrec int_upper: {i...} int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  natrec: natrec uall: [x:A]. B[x] member: t ∈ T int_upper: {i...} so_apply: x[s] subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] uimplies: supposing a lelt: i ≤ j < k and: P ∧ Q prop: all: x:A. B[x] implies:  Q nat: false: False ge: i ≥  guard: {T} genrec: genrec so_apply: x[s1;s2] sq_stable: SqStable(P) uiff: uiff(P;Q) subtract: m squash: T le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q top: Top sq_type: SQType(T) nat_plus: + less_than: a < b
Lemmas referenced :  int_upper_properties mul-associates mul-distributes omega-shadow mul-distributes-right two-mul one-mul minus-zero zero-mul add-mul-special int_subtype_base set_subtype_base subtype_base_sq nat_wf subtype_rel_self not-le-2 le_reflexive int_seg_subtype subtype_rel_dep_function add-zero minus-minus not-ge-2 false_wf subtract_wf decidable__le le-add-cancel add-commutes add_functionality_wrt_le zero-add add-associates minus-one-mul-top add-swap minus-one-mul minus-add condition-implies-le less-iff-le sq_stable__le less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties le_wf lelt_wf subtype_rel_sets int_seg_wf int_upper_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality lemma_by_obid isectElimination thin hypothesisEquality because_Cache setElimination rename applyEquality intEquality lambdaEquality independent_isectElimination setEquality lambdaFormation productElimination isect_memberEquality cumulativity universeEquality intWeakElimination natural_numberEquality independent_functionElimination voidElimination dependent_functionElimination addEquality minusEquality imageMemberEquality baseClosed imageElimination unionElimination independent_pairFormation voidEquality dependent_set_memberEquality instantiate multiplyEquality

Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[T:\{k...\}  {}\mrightarrow{}  Type].  \mforall{}[g:n:\{k...\}  {}\mrightarrow{}  (m:\{k..n\msupminus{}\}  {}\mrightarrow{}  T[m])  {}\mrightarrow{}  T[n]].
    (letrec  f(n)=g[n;f]  in
        f  \mmember{}  n:\{k...\}  {}\mrightarrow{}  T[n])



Date html generated: 2016_05_13-PM-04_03_14
Last ObjectModification: 2016_01_14-PM-07_24_45

Theory : int_1


Home Index