Nuprl Lemma : natrec_wf_intseg
∀[k:ℤ]. ∀[T:{k...} ⟶ Type]. ∀[g:n:{k...} ⟶ (m:{k..n-} ⟶ T[m]) ⟶ T[n]].  (letrec f(n)=g[n;f] in f ∈ n:{k...} ⟶ T[n])
Proof
Definitions occuring in Statement : 
natrec: natrec, 
int_upper: {i...}
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
natrec: natrec, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_upper: {i...}
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
genrec: genrec, 
so_apply: x[s1;s2]
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
squash: ↓T
, 
le: A ≤ B
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
true: True
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
sq_type: SQType(T)
, 
nat_plus: ℕ+
, 
less_than: a < b
Lemmas referenced : 
int_upper_properties, 
mul-associates, 
mul-distributes, 
omega-shadow, 
mul-distributes-right, 
two-mul, 
one-mul, 
minus-zero, 
zero-mul, 
add-mul-special, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
nat_wf, 
subtype_rel_self, 
not-le-2, 
le_reflexive, 
int_seg_subtype, 
subtype_rel_dep_function, 
add-zero, 
minus-minus, 
not-ge-2, 
false_wf, 
subtract_wf, 
decidable__le, 
le-add-cancel, 
add-commutes, 
add_functionality_wrt_le, 
zero-add, 
add-associates, 
minus-one-mul-top, 
add-swap, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
less-iff-le, 
sq_stable__le, 
less_than_wf, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties, 
le_wf, 
lelt_wf, 
subtype_rel_sets, 
int_seg_wf, 
int_upper_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
setElimination, 
rename, 
applyEquality, 
intEquality, 
lambdaEquality, 
independent_isectElimination, 
setEquality, 
lambdaFormation, 
productElimination, 
isect_memberEquality, 
cumulativity, 
universeEquality, 
intWeakElimination, 
natural_numberEquality, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
addEquality, 
minusEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
independent_pairFormation, 
voidEquality, 
dependent_set_memberEquality, 
instantiate, 
multiplyEquality
Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[T:\{k...\}  {}\mrightarrow{}  Type].  \mforall{}[g:n:\{k...\}  {}\mrightarrow{}  (m:\{k..n\msupminus{}\}  {}\mrightarrow{}  T[m])  {}\mrightarrow{}  T[n]].
    (letrec  f(n)=g[n;f]  in
        f  \mmember{}  n:\{k...\}  {}\mrightarrow{}  T[n])
Date html generated:
2016_05_13-PM-04_03_14
Last ObjectModification:
2016_01_14-PM-07_24_45
Theory : int_1
Home
Index