Nuprl Lemma : mul-list-merge
∀[ns2,ns1:ℤ List].  (Π(merge-int(ns1;ns2))  = (Π(ns1)  * Π(ns2) ) ∈ ℤ)
Proof
Definitions occuring in Statement : 
mul-list: Π(ns) 
, 
merge-int: merge-int(as;bs)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
merge-int: merge-int(as;bs)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
mul-list: Π(ns) 
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
equal-wf-base, 
list_subtype_base, 
int_subtype_base, 
reduce_nil_lemma, 
mul_list_nil_lemma, 
decidable__equal_int, 
mul-list_wf, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
reduce_cons_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
mul-list-insert-int, 
merge-int_wf, 
subtype_rel_self, 
cons_wf, 
iff_weakening_equal, 
mul-swap
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
lambdaFormation, 
rename, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
multiplyEquality, 
imageMemberEquality, 
productElimination, 
axiomEquality
Latex:
\mforall{}[ns2,ns1:\mBbbZ{}  List].    (\mPi{}(merge-int(ns1;ns2))    =  (\mPi{}(ns1)    *  \mPi{}(ns2)  ))
Date html generated:
2018_05_21-PM-06_57_32
Last ObjectModification:
2017_07_26-PM-04_59_49
Theory : general
Home
Index