Nuprl Lemma : mul-list-insert-int
∀[ns:ℤ List]. ∀[x:ℤ].  (Π(insert-int(x;ns))  = (x * Π(ns) ) ∈ ℤ)
Proof
Definitions occuring in Statement : 
mul-list: Π(ns) 
, 
insert-int: insert-int(x;l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
insert-int: insert-int(x;l)
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
mul-list: Π(ns) 
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
cons: [a / b]
, 
nil: []
, 
it: ⋅
, 
has-value: (a)↓
, 
prop: ℙ
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
uall_wf, 
equal-wf-base, 
list_subtype_base, 
int_subtype_base, 
list_wf, 
list_ind_nil_lemma, 
mul_list_nil_lemma, 
list_ind_cons_lemma, 
reduce_cons_lemma, 
value-type-has-value, 
list-value-type, 
insert-int_wf, 
subtype_rel_self, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
mul-list_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
le_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
mul-swap
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
sqequalRule, 
lambdaEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
multiplyEquality, 
natural_numberEquality, 
lambdaFormation, 
rename, 
callbyvalueReduce, 
axiomEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}[ns:\mBbbZ{}  List].  \mforall{}[x:\mBbbZ{}].    (\mPi{}(insert-int(x;ns))    =  (x  *  \mPi{}(ns)  ))
Date html generated:
2018_05_21-PM-06_57_24
Last ObjectModification:
2017_07_26-PM-04_59_41
Theory : general
Home
Index