Nuprl Lemma : mul-list-insert-int

[ns:ℤ List]. ∀[x:ℤ].  (insert-int(x;ns))  (x * Π(ns) ) ∈ ℤ)


Proof




Definitions occuring in Statement :  mul-list: Π(ns)  insert-int: insert-int(x;l) list: List uall: [x:A]. B[x] multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s] implies:  Q insert-int: insert-int(x;l) all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] mul-list: Π(ns)  reduce: reduce(f;k;as) list_ind: list_ind cons: [a b] nil: [] it: has-value: (a)↓ prop: bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction uall_wf equal-wf-base list_subtype_base int_subtype_base list_wf list_ind_nil_lemma mul_list_nil_lemma list_ind_cons_lemma reduce_cons_lemma value-type-has-value list-value-type insert-int_wf subtype_rel_self le_int_wf bool_wf eqtt_to_assert assert_of_le_int mul-list_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf squash_wf true_wf iff_weakening_equal mul-swap
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination intEquality sqequalRule lambdaEquality baseApply closedConclusion baseClosed hypothesisEquality applyEquality because_Cache independent_isectElimination hypothesis independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality multiplyEquality natural_numberEquality lambdaFormation rename callbyvalueReduce axiomEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_pairFormation promote_hyp instantiate cumulativity imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}[ns:\mBbbZ{}  List].  \mforall{}[x:\mBbbZ{}].    (\mPi{}(insert-int(x;ns))    =  (x  *  \mPi{}(ns)  ))



Date html generated: 2018_05_21-PM-06_57_24
Last ObjectModification: 2017_07_26-PM-04_59_41

Theory : general


Home Index