Nuprl Lemma : record_extensionality

[T:Atom ⟶ 𝕌']. ∀[r1,r2:record(x.T[x])].  uiff(r1 r2 ∈ record(x.T[x]);∀a:Atom. (r1.a r2.a ∈ T[a]))


Proof




Definitions occuring in Statement :  record-select: r.x record: record(x.T[x]) uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] atom: Atom universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: record: record(x.T[x]) record-select: r.x guard: {T}
Lemmas referenced :  and_wf equal_wf record_wf record-select_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation equalitySymmetry dependent_set_memberEquality hypothesis hypothesisEquality thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination sqequalRule lambdaEquality applyEquality atomEquality setElimination rename productElimination setEquality because_Cache dependent_functionElimination axiomEquality cumulativity independent_pairEquality isect_memberEquality equalityTransitivity functionExtensionality

Latex:
\mforall{}[T:Atom  {}\mrightarrow{}  \mBbbU{}'].  \mforall{}[r1,r2:record(x.T[x])].    uiff(r1  =  r2;\mforall{}a:Atom.  (r1.a  =  r2.a))



Date html generated: 2016_05_15-PM-06_40_43
Last ObjectModification: 2015_12_27-AM-11_52_11

Theory : general


Home Index