Nuprl Lemma : record_extensionality
∀[T:Atom ⟶ 𝕌']. ∀[r1,r2:record(x.T[x])].  uiff(r1 = r2 ∈ record(x.T[x]);∀a:Atom. (r1.a = r2.a ∈ T[a]))
Proof
Definitions occuring in Statement : 
record-select: r.x
, 
record: record(x.T[x])
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
atom: Atom
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
record: record(x.T[x])
, 
record-select: r.x
, 
guard: {T}
Lemmas referenced : 
and_wf, 
equal_wf, 
record_wf, 
record-select_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
equalitySymmetry, 
dependent_set_memberEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
atomEquality, 
setElimination, 
rename, 
productElimination, 
setEquality, 
because_Cache, 
dependent_functionElimination, 
axiomEquality, 
cumulativity, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
functionExtensionality
Latex:
\mforall{}[T:Atom  {}\mrightarrow{}  \mBbbU{}'].  \mforall{}[r1,r2:record(x.T[x])].    uiff(r1  =  r2;\mforall{}a:Atom.  (r1.a  =  r2.a))
Date html generated:
2016_05_15-PM-06_40_43
Last ObjectModification:
2015_12_27-AM-11_52_11
Theory : general
Home
Index