Nuprl Lemma : rel-immediate-exists
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (SWellFounded(R x y) 
⇒ (∀x,y:T.  Dec(∃z:T. ((R x z) ∧ (R z y)))) 
⇒ (∀y:T. ((∃x:T. (R x y)) 
⇒ (∃x:T. (R! x y)))))
Proof
Definitions occuring in Statement : 
rel-immediate: R!
, 
strongwellfounded: SWellFounded(R[x; y])
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
exists: ∃x:A. B[x]
, 
rel_implies: R1 => R2
, 
infix_ap: x f y
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Lemmas referenced : 
rel-immediate-rel-plus, 
exists_wf, 
all_wf, 
decidable_wf, 
and_wf, 
strongwellfounded_wf, 
rel-rel-plus, 
rel_plus_iff, 
rel-immediate_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
universeEquality, 
functionEquality, 
cumulativity, 
productElimination, 
dependent_functionElimination, 
dependent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (SWellFounded(R  x  y)
    {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(\mexists{}z:T.  ((R  x  z)  \mwedge{}  (R  z  y))))
    {}\mRightarrow{}  (\mforall{}y:T.  ((\mexists{}x:T.  (R  x  y))  {}\mRightarrow{}  (\mexists{}x:T.  (R!  x  y)))))
Date html generated:
2016_05_15-PM-04_54_27
Last ObjectModification:
2015_12_27-PM-02_31_49
Theory : general
Home
Index