Nuprl Lemma : rel-immediate-exists

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (SWellFounded(R y)  (∀x,y:T.  Dec(∃z:T. ((R z) ∧ (R y))))  (∀y:T. ((∃x:T. (R y))  (∃x:T. (R! y)))))


Proof




Definitions occuring in Statement :  rel-immediate: R! strongwellfounded: SWellFounded(R[x; y]) decidable: Dec(P) uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B so_apply: x[s1;s2] exists: x:A. B[x] rel_implies: R1 => R2 infix_ap: y iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  rel-immediate-rel-plus exists_wf all_wf decidable_wf and_wf strongwellfounded_wf rel-rel-plus rel_plus_iff rel-immediate_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_functionElimination hypothesis sqequalRule lambdaEquality applyEquality universeEquality functionEquality cumulativity productElimination dependent_functionElimination dependent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (SWellFounded(R  x  y)
    {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(\mexists{}z:T.  ((R  x  z)  \mwedge{}  (R  z  y))))
    {}\mRightarrow{}  (\mforall{}y:T.  ((\mexists{}x:T.  (R  x  y))  {}\mRightarrow{}  (\mexists{}x:T.  (R!  x  y)))))



Date html generated: 2016_05_15-PM-04_54_27
Last ObjectModification: 2015_12_27-PM-02_31_49

Theory : general


Home Index