Nuprl Lemma : s-filter_wf

[T:Type]. ∀[as:T List]. ∀[P:{a:T| (a ∈ as)}  ⟶ 𝔹].  s-filter(P;as) ∈ List supposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  s-filter: s-filter(p;as) l_member: (x ∈ l) list: List bool: 𝔹 uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a s-filter: s-filter(p;as) prop:
Lemmas referenced :  list-subtype reduce_wf l_member_wf list_wf ifthenelse_wf s-insert_wf nil_wf subtype_rel_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setEquality hypothesis lambdaEquality applyEquality independent_isectElimination setElimination rename sqequalRule axiomEquality equalityTransitivity equalitySymmetry intEquality isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as:T  List].  \mforall{}[P:\{a:T|  (a  \mmember{}  as)\}    {}\mrightarrow{}  \mBbbB{}].    s-filter(P;as)  \mmember{}  T  List  supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2016_05_15-PM-03_52_15
Last ObjectModification: 2015_12_27-PM-01_23_23

Theory : general


Home Index