Nuprl Lemma : s-filter_wf
∀[T:Type]. ∀[as:T List]. ∀[P:{a:T| (a ∈ as)}  ⟶ 𝔹].  s-filter(P;as) ∈ T List supposing T ⊆r ℤ
Proof
Definitions occuring in Statement : 
s-filter: s-filter(p;as)
, 
l_member: (x ∈ l)
, 
list: T List
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
s-filter: s-filter(p;as)
, 
prop: ℙ
Lemmas referenced : 
list-subtype, 
reduce_wf, 
l_member_wf, 
list_wf, 
ifthenelse_wf, 
s-insert_wf, 
nil_wf, 
subtype_rel_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
setElimination, 
rename, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as:T  List].  \mforall{}[P:\{a:T|  (a  \mmember{}  as)\}    {}\mrightarrow{}  \mBbbB{}].    s-filter(P;as)  \mmember{}  T  List  supposing  T  \msubseteq{}r  \mBbbZ{}
Date html generated:
2016_05_15-PM-03_52_15
Last ObjectModification:
2015_12_27-PM-01_23_23
Theory : general
Home
Index