Nuprl Lemma : sorted-by-eq-rels

T:Type. ∀R1,R2:T ⟶ T ⟶ ℙ. ∀L:T List.
  ((∀x∈L.(∀y∈L.R1[x;y] ⇐⇒ R2[x;y]))  sorted-by(λx,y. R1[x;y];L)  sorted-by(λx,y. R2[x;y];L))


Proof




Definitions occuring in Statement :  sorted-by: sorted-by(R;L) l_all: (∀x∈L.P[x]) list: List prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  l-ordered-is-sorted-by l-ordered-eq-rels sorted-by_wf l_member_wf l_all_wf2 iff_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality applyEquality hypothesis productElimination independent_pairFormation independent_functionElimination because_Cache setElimination rename setEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}T:Type.  \mforall{}R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}L:T  List.
    ((\mforall{}x\mmember{}L.(\mforall{}y\mmember{}L.R1[x;y]  \mLeftarrow{}{}\mRightarrow{}  R2[x;y]))  {}\mRightarrow{}  sorted-by(\mlambda{}x,y.  R1[x;y];L)  {}\mRightarrow{}  sorted-by(\mlambda{}x,y.  R2[x;y];L))



Date html generated: 2016_05_15-PM-04_38_16
Last ObjectModification: 2015_12_27-PM-02_43_06

Theory : general


Home Index