Nuprl Lemma : l-ordered-eq-rels
∀T:Type. ∀R1,R2:T ⟶ T ⟶ ℙ. ∀L:T List.
  ((∀x∈L.(∀y∈L.R1[x;y] 
⇐⇒ R2[x;y])) 
⇒ l-ordered(T;x,y.R1[x;y];L) 
⇒ l-ordered(T;x,y.R2[x;y];L))
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
l_all_iff, 
l_all_wf2, 
iff_wf, 
l_member_wf, 
l_before_member2, 
l_before_member, 
l_before_wf, 
l-ordered_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
productElimination, 
allFunctionality, 
promote_hyp, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}L:T  List.
    ((\mforall{}x\mmember{}L.(\mforall{}y\mmember{}L.R1[x;y]  \mLeftarrow{}{}\mRightarrow{}  R2[x;y]))  {}\mRightarrow{}  l-ordered(T;x,y.R1[x;y];L)  {}\mRightarrow{}  l-ordered(T;x,y.R2[x;y];L))
Date html generated:
2016_05_15-PM-04_38_09
Last ObjectModification:
2015_12_27-PM-02_43_32
Theory : general
Home
Index