Nuprl Lemma : sparse-signed-rep-exists-ext

m:ℤ
  (∃L:{-1..2-List [((m = Σi<||L||.L[i]*2^i ∈ ℤ)
                    ∧ (0 < ||L||  (last(L) 0 ∈ ℤ)))
                    ∧ (∀i:ℕ||L|| 1. ((L[i] 0 ∈ ℤ) ∨ (L[i 1] 0 ∈ ℤ))))])


Proof




Definitions occuring in Statement :  power-sum: Σi<n.a[i]*x^i last: last(L) select: L[n] length: ||as|| list: List int_seg: {i..j-} less_than: a < b all: x:A. B[x] sq_exists: x:A [B[x]] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q subtract: m add: m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T sparse-signed-rep-exists uniform-comp-nat-induction decidable__equal_int decidable__int_equal uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T decidable__assert genrec-ap: genrec-ap ifthenelse: if then else fi 
Lemmas referenced :  sparse-signed-rep-exists lifting-strict-int_eq top_wf equal_wf has-value_wf_base base_wf is-exception_wf lifting-strict-decide uniform-comp-nat-induction decidable__equal_int decidable__int_equal decidable__assert
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueDecide hypothesisEquality equalityTransitivity equalitySymmetry unionEquality unionElimination sqleReflexivity dependent_functionElimination independent_functionElimination baseApply closedConclusion decideExceptionCases inrFormation because_Cache imageMemberEquality imageElimination exceptionSqequal inlFormation

Latex:
\mforall{}m:\mBbbZ{}
    (\mexists{}L:\{-1..2\msupminus{}\}  List  [((m  =  \mSigma{}i<||L||.L[i]*2\^{}i)
                                        \mwedge{}  (0  <  ||L||  {}\mRightarrow{}  (\mneg{}(last(L)  =  0)))
                                        \mwedge{}  (\mforall{}i:\mBbbN{}||L||  -  1.  ((L[i]  =  0)  \mvee{}  (L[i  +  1]  =  0))))])



Date html generated: 2018_05_21-PM-08_35_47
Last ObjectModification: 2017_07_26-PM-06_00_22

Theory : general


Home Index