Nuprl Lemma : sq_stable__iseg

[T:Type]. ∀l1,l2:T List.  SqStable(l1 ≤ l2)


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 list: List sq_stable: SqStable(P) uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  iseg: l1 ≤ l2 uall: [x:A]. B[x] all: x:A. B[x] sq_stable: SqStable(P) implies:  Q exists: x:A. B[x] member: t ∈ T squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  nth_tl_wf length_wf length_wf_nat equal_wf nat_wf nth_tl_append list_wf append_wf squash_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation dependent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis imageElimination productElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry hyp_replacement Error :applyLambdaEquality,  setElimination rename because_Cache lambdaEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}l1,l2:T  List.    SqStable(l1  \mleq{}  l2)



Date html generated: 2016_10_25-AM-10_44_58
Last ObjectModification: 2016_07_12-AM-06_54_33

Theory : general


Home Index