Nuprl Lemma : sub-mset-map
∀[A,B:Type].  ∀f:A ⟶ B. ∀L1,L2:A List.  (sub-mset(A; L1; L2) 
⇒ sub-mset(B; map(f;L1); map(f;L2)))
Proof
Definitions occuring in Statement : 
sub-mset: sub-mset(T; L1; L2)
, 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sub-mset: sub-mset(T; L1; L2)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
top: Top
Lemmas referenced : 
map_wf, 
permutation_wf, 
append_wf, 
sub-mset_wf, 
list_wf, 
map_append_sq, 
permutation-map
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
universeEquality, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}L1,L2:A  List.    (sub-mset(A;  L1;  L2)  {}\mRightarrow{}  sub-mset(B;  map(f;L1);  map(f;L2)))
Date html generated:
2016_05_15-PM-04_32_18
Last ObjectModification:
2015_12_27-PM-02_49_09
Theory : general
Home
Index