Nuprl Lemma : sub-mset-map

[A,B:Type].  ∀f:A ⟶ B. ∀L1,L2:A List.  (sub-mset(A; L1; L2)  sub-mset(B; map(f;L1); map(f;L2)))


Proof




Definitions occuring in Statement :  sub-mset: sub-mset(T; L1; L2) map: map(f;as) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q sub-mset: sub-mset(T; L1; L2) exists: x:A. B[x] member: t ∈ T prop: top: Top
Lemmas referenced :  map_wf permutation_wf append_wf sub-mset_wf list_wf map_append_sq permutation-map
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation cut lemma_by_obid isectElimination hypothesisEquality hypothesis functionEquality universeEquality sqequalRule isect_memberEquality voidElimination voidEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}L1,L2:A  List.    (sub-mset(A;  L1;  L2)  {}\mRightarrow{}  sub-mset(B;  map(f;L1);  map(f;L2)))



Date html generated: 2016_05_15-PM-04_32_18
Last ObjectModification: 2015_12_27-PM-02_49_09

Theory : general


Home Index