Nuprl Lemma : sublist_accum

[T:Type]
  ∀L,l1,l2:T List. ∀f:(T List) ⟶ T ⟶ (T List).
    (l1 ⊆ l2
     (∀x:T. ∀l:T List.  l ⊆ f[l;x])
     l1 ⊆ accumulate (with value and list item x):
             f[l;x]
            over list:
              L
            with starting value:
             l2))


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 list_accum: list_accum list: List uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s1;s2] so_apply: x[s] so_lambda: λ2y.t[x; y] top: Top
Lemmas referenced :  list_induction all_wf list_wf sublist_wf list_accum_wf list_accum_nil_lemma list_accum_cons_lemma sublist_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis because_Cache functionEquality applyEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality rename universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}L,l1,l2:T  List.  \mforall{}f:(T  List)  {}\mrightarrow{}  T  {}\mrightarrow{}  (T  List).
        (l1  \msubseteq{}  l2
        {}\mRightarrow{}  (\mforall{}x:T.  \mforall{}l:T  List.    l  \msubseteq{}  f[l;x])
        {}\mRightarrow{}  l1  \msubseteq{}  accumulate  (with  value  l  and  list  item  x):
                          f[l;x]
                        over  list:
                            L
                        with  starting  value:
                          l2))



Date html generated: 2016_05_15-PM-03_57_36
Last ObjectModification: 2015_12_27-PM-03_08_05

Theory : general


Home Index