Nuprl Lemma : test-eq-product

[A,B1,B2,C,D:Type]. ∀[a1,a2:A]. ∀[b1:B1]. ∀[b1':B2]. ∀[b2:B1]. ∀[b2':B2]. ∀[c1,c2:C]. ∀[d1,d2:D].
  (<a1, <b1, b1'>c1, d1> = <a2, <b2, b2'>c2, d2> ∈ (a:A × b:B1 × B2 × c:C × D)
  ⇐⇒ (a1 a2 ∈ A) ∧ ((b1 b2 ∈ B1) ∧ (b1' b2' ∈ B2)) ∧ (c1 c2 ∈ C) ∧ (d1 d2 ∈ D))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q pair: <a, b> product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  iff: ⇐⇒ Q and: P ∧ Q pi1: fst(t) member: t ∈ T pi2: snd(t) uall: [x:A]. B[x] prop: rev_implies:  Q cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B implies:  Q
Lemmas referenced :  equal_wf uall_wf iff_wf
Rules used in proof :  cut addLevel uallFunctionality sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity productElimination thin independent_pairFormation impliesFunctionality applyLambdaEquality sqequalRule hypothesisEquality hypothesis cumulativity introduction extract_by_obid isectElimination productEquality dependent_pairEquality independent_pairEquality instantiate universeEquality lambdaEquality because_Cache applyEquality isect_memberFormation lambdaFormation dependent_functionElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[A,B1,B2,C,D:Type].  \mforall{}[a1,a2:A].  \mforall{}[b1:B1].  \mforall{}[b1':B2].  \mforall{}[b2:B1].  \mforall{}[b2':B2].  \mforall{}[c1,c2:C].  \mforall{}[d1,d2:D].
    (<a1,  <b1,  b1'>,  c1,  d1>  =  <a2,  <b2,  b2'>,  c2,  d2>
    \mLeftarrow{}{}\mRightarrow{}  (a1  =  a2)  \mwedge{}  ((b1  =  b2)  \mwedge{}  (b1'  =  b2'))  \mwedge{}  (c1  =  c2)  \mwedge{}  (d1  =  d2))



Date html generated: 2017_10_01-AM-09_11_14
Last ObjectModification: 2017_07_26-PM-04_47_20

Theory : general


Home Index