Nuprl Lemma : ts-refinement-reachable2

ts1,ts2:transition-system{i:l}. ∀f:ts-type(ts2) ⟶ ts-type(ts1).
  (ts-refinement(ts1;ts2;f)
   (∀s1,s2:ts-reachable(ts2).  ((s1 (ts-rel(ts2)^*) s2)  ((f s1) (ts-rel(ts1)^*) (f s2)))))


Proof




Definitions occuring in Statement :  ts-refinement: ts-refinement(ts1;ts2;f) ts-reachable: ts-reachable(ts) ts-rel: ts-rel(ts) ts-type: ts-type(ts) transition-system: transition-system{i:l} rel_star: R^* infix_ap: y all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q ts-reachable: ts-reachable(ts) uall: [x:A]. B[x] member: t ∈ T prop: infix_ap: y so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] guard: {T} ts-refinement: ts-refinement(ts1;ts2;f) and: P ∧ Q
Lemmas referenced :  rel-preserving-star-reachable ts-type_wf ts-init_wf ts-rel_wf set_wf rel_star_wf ts-refinement_wf transition-system_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination independent_functionElimination applyEquality setElimination rename sqequalRule lambdaEquality universeEquality because_Cache functionEquality productElimination

Latex:
\mforall{}ts1,ts2:transition-system\{i:l\}.  \mforall{}f:ts-type(ts2)  {}\mrightarrow{}  ts-type(ts1).
    (ts-refinement(ts1;ts2;f)
    {}\mRightarrow{}  (\mforall{}s1,s2:ts-reachable(ts2).
                ((s1  rel\_star(ts-type(ts2);  ts-rel(ts2))  s2)  {}\mRightarrow{}  ((f  s1)  (ts-rel(ts1)\^{}*)  (f  s2)))))



Date html generated: 2016_05_15-PM-05_42_16
Last ObjectModification: 2015_12_27-PM-00_31_29

Theory : general


Home Index