Nuprl Lemma : rel-preserving-star-reachable
∀[T1,T2:Type]. ∀[i2:T2]. ∀[R1:T1 ⟶ T1 ⟶ Type]. ∀[R2:T2 ⟶ T2 ⟶ Type].
  ∀f:T2 ⟶ T1
    ((∀x,y:{s:T2| i2 (R2^*) s} .  ((x R2 y) 
⇒ ((f x) (R1^*) (f y))))
    
⇒ {∀x,y:{s:T2| i2 (R2^*) s} .  ((x (R2^*) y) 
⇒ ((f x) (R1^*) (f y)))})
Proof
Definitions occuring in Statement : 
rel_star: R^*
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rel_star: R^*
, 
infix_ap: x f y
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
rel_exp: R^n
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
false: False
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
uiff: uiff(P;Q)
, 
bfalse: ff
Lemmas referenced : 
rel_star_wf, 
subtype_rel_self, 
istype-universe, 
rel_exp_wf, 
istype-void, 
istype-le, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
istype-less_than, 
primrec-wf2, 
rel_star_weakening, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
eq_int_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
int_subtype_base, 
istype-assert, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
rel_star_transitivity, 
rel_rel_star
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
universeIsType, 
cut, 
applyEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
functionExtensionality, 
hypothesis, 
instantiate, 
functionEquality, 
cumulativity, 
universeEquality, 
setElimination, 
rename, 
inhabitedIsType, 
setIsType, 
because_Cache, 
functionIsType, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
voidElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
setEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
intEquality, 
equalityIstype, 
sqequalBase
Latex:
\mforall{}[T1,T2:Type].  \mforall{}[i2:T2].  \mforall{}[R1:T1  {}\mrightarrow{}  T1  {}\mrightarrow{}  Type].  \mforall{}[R2:T2  {}\mrightarrow{}  T2  {}\mrightarrow{}  Type].
    \mforall{}f:T2  {}\mrightarrow{}  T1
        ((\mforall{}x,y:\{s:T2|  i2  rel\_star(T2;  R2)  s\}  .    ((x  R2  y)  {}\mRightarrow{}  ((f  x)  rel\_star(T1;  R1)  (f  y))))
        {}\mRightarrow{}  \{\mforall{}x,y:\{s:T2|  i2  (R2\^{}*)  s\}  .
                    ((x  (R2\^{}*)  y)  {}\mRightarrow{}  ((f  x)  (R1\^{}*)  (f  y)))\})
Date html generated:
2020_05_20-AM-08_11_45
Last ObjectModification:
2020_01_26-PM-00_16_16
Theory : general
Home
Index