Nuprl Lemma : rel-preserving-star-reachable

[T1,T2:Type]. ∀[i2:T2]. ∀[R1:T1 ⟶ T1 ⟶ Type]. ∀[R2:T2 ⟶ T2 ⟶ Type].
  ∀f:T2 ⟶ T1
    ((∀x,y:{s:T2| i2 (R2^*) s} .  ((x R2 y)  ((f x) (R1^*) (f y))))
     {∀x,y:{s:T2| i2 (R2^*) s} .  ((x (R2^*) y)  ((f x) (R1^*) (f y)))})


Proof




Definitions occuring in Statement :  rel_star: R^* uall: [x:A]. B[x] guard: {T} infix_ap: y all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] all: x:A. B[x] implies:  Q rel_star: R^* infix_ap: y exists: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B prop: rel_exp: R^n eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A false: False decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) uiff: uiff(P;Q) bfalse: ff
Lemmas referenced :  rel_star_wf subtype_rel_self istype-universe rel_exp_wf istype-void istype-le decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma istype-less_than primrec-wf2 rel_star_weakening equal_wf squash_wf true_wf iff_weakening_equal eq_int_wf intformeq_wf int_formula_prop_eq_lemma assert_wf bnot_wf not_wf equal-wf-base int_subtype_base istype-assert bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot rel_star_transitivity rel_rel_star
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution productElimination thin universeIsType cut applyEquality introduction extract_by_obid isectElimination hypothesisEquality functionExtensionality hypothesis instantiate functionEquality cumulativity universeEquality setElimination rename inhabitedIsType setIsType because_Cache functionIsType dependent_functionElimination independent_functionElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation voidElimination unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  setEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed intEquality equalityIstype sqequalBase

Latex:
\mforall{}[T1,T2:Type].  \mforall{}[i2:T2].  \mforall{}[R1:T1  {}\mrightarrow{}  T1  {}\mrightarrow{}  Type].  \mforall{}[R2:T2  {}\mrightarrow{}  T2  {}\mrightarrow{}  Type].
    \mforall{}f:T2  {}\mrightarrow{}  T1
        ((\mforall{}x,y:\{s:T2|  i2  rel\_star(T2;  R2)  s\}  .    ((x  R2  y)  {}\mRightarrow{}  ((f  x)  rel\_star(T1;  R1)  (f  y))))
        {}\mRightarrow{}  \{\mforall{}x,y:\{s:T2|  i2  (R2\^{}*)  s\}  .
                    ((x  (R2\^{}*)  y)  {}\mRightarrow{}  ((f  x)  (R1\^{}*)  (f  y)))\})



Date html generated: 2020_05_20-AM-08_11_45
Last ObjectModification: 2020_01_26-PM-00_16_16

Theory : general


Home Index