Nuprl Lemma : ts-refinement_wf

[ts1,ts2:transition-system{i:l}]. ∀[f:ts-type(ts2) ⟶ ts-type(ts1)].  (ts-refinement(ts1;ts2;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  ts-refinement: ts-refinement(ts1;ts2;f) ts-type: ts-type(ts) transition-system: transition-system{i:l} uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ts-refinement: ts-refinement(ts1;ts2;f) prop: and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] uimplies: supposing a ts-reachable: ts-reachable(ts) all: x:A. B[x] infix_ap: y exists: x:A. B[x]
Lemmas referenced :  infix_ap_wf ts-type_wf rel_star_wf ts-rel_wf ts-init_wf all_wf ts-reachable_wf subtype_rel_set subtype_rel_wf subtype_rel_dep_function ts-final_wf exists_wf equal_wf transition-system_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis applyEquality lambdaEquality cumulativity universeEquality because_Cache functionExtensionality functionEquality independent_isectElimination setElimination rename setEquality lambdaFormation axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[ts1,ts2:transition-system\{i:l\}].  \mforall{}[f:ts-type(ts2)  {}\mrightarrow{}  ts-type(ts1)].
    (ts-refinement(ts1;ts2;f)  \mmember{}  \mBbbP{})



Date html generated: 2018_05_21-PM-08_00_34
Last ObjectModification: 2017_07_26-PM-05_37_25

Theory : general


Home Index