Nuprl Lemma : distributive-lattice-cat_wf
BddDistributiveLattice ∈ SmallCategory'
Proof
Definitions occuring in Statement : 
distributive-lattice-cat: BddDistributiveLattice
, 
small-category: SmallCategory
, 
member: t ∈ T
Definitions unfolded in proof : 
distributive-lattice-cat: BddDistributiveLattice
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda5, 
so_apply: x[s1;s2;s3;s4;s5]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
compose: f o g
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
mk-cat_wf, 
bdd-distributive-lattice_wf, 
bounded-lattice-hom_wf, 
id-is-bounded-lattice-hom, 
bdd-distributive-lattice-subtype-bdd-lattice, 
compose-bounded-lattice-hom, 
bounded-lattice-hom-equal, 
equal_wf, 
comp_assoc, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
applyEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
independent_isectElimination, 
lambdaFormation, 
independent_pairFormation, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_functionElimination
Latex:
BddDistributiveLattice  \mmember{}  SmallCategory'
Date html generated:
2020_05_20-AM-09_00_11
Last ObjectModification:
2020_01_16-PM-05_04_20
Theory : lattices
Home
Index