Nuprl Lemma : id-is-bounded-lattice-hom

[l:BoundedLattice]. x.x ∈ Hom(l;l))


Proof




Definitions occuring in Statement :  bounded-lattice-hom: Hom(l1;l2) bdd-lattice: BoundedLattice uall: [x:A]. B[x] member: t ∈ T lambda: λx.A[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bounded-lattice-hom: Hom(l1;l2) and: P ∧ Q cand: c∧ B bdd-lattice: BoundedLattice subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a lattice-hom: Hom(l1;l2)
Lemmas referenced :  lattice-0_wf lattice-1_wf equal_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf bdd-lattice_wf id-is-lattice-hom
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis independent_pairFormation because_Cache productEquality applyEquality instantiate lambdaEquality cumulativity independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[l:BoundedLattice].  (\mlambda{}x.x  \mmember{}  Hom(l;l))



Date html generated: 2020_05_20-AM-08_24_56
Last ObjectModification: 2017_07_28-AM-09_12_43

Theory : lattices


Home Index