Nuprl Lemma : id-is-bounded-lattice-hom
∀[l:BoundedLattice]. (λx.x ∈ Hom(l;l))
Proof
Definitions occuring in Statement : 
bounded-lattice-hom: Hom(l1;l2)
, 
bdd-lattice: BoundedLattice
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bounded-lattice-hom: Hom(l1;l2)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
bdd-lattice: BoundedLattice
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
lattice-hom: Hom(l1;l2)
Lemmas referenced : 
lattice-0_wf, 
lattice-1_wf, 
equal_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
bdd-lattice_wf, 
id-is-lattice-hom
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
because_Cache, 
productEquality, 
applyEquality, 
instantiate, 
lambdaEquality, 
cumulativity, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[l:BoundedLattice].  (\mlambda{}x.x  \mmember{}  Hom(l;l))
Date html generated:
2020_05_20-AM-08_24_56
Last ObjectModification:
2017_07_28-AM-09_12_43
Theory : lattices
Home
Index