Nuprl Lemma : id-is-lattice-hom
∀[l:LatticeStructure]. (λx.x ∈ Hom(l;l))
Proof
Definitions occuring in Statement : 
lattice-hom: Hom(l1;l2)
, 
lattice-structure: LatticeStructure
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lattice-hom: Hom(l1;l2)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
lattice-point_wf, 
lattice-meet_wf, 
lattice-join_wf, 
uall_wf, 
and_wf, 
equal_wf, 
lattice-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
lambdaEquality, 
hypothesisEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
independent_pairFormation, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
applyEquality
Latex:
\mforall{}[l:LatticeStructure].  (\mlambda{}x.x  \mmember{}  Hom(l;l))
Date html generated:
2020_05_20-AM-08_23_50
Last ObjectModification:
2015_12_28-PM-02_03_38
Theory : lattices
Home
Index