Nuprl Lemma : id-is-lattice-hom

[l:LatticeStructure]. x.x ∈ Hom(l;l))


Proof




Definitions occuring in Statement :  lattice-hom: Hom(l1;l2) lattice-structure: LatticeStructure uall: [x:A]. B[x] member: t ∈ T lambda: λx.A[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lattice-hom: Hom(l1;l2) and: P ∧ Q cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  lattice-point_wf lattice-meet_wf lattice-join_wf uall_wf and_wf equal_wf lattice-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality lambdaEquality hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule independent_pairFormation productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache applyEquality

Latex:
\mforall{}[l:LatticeStructure].  (\mlambda{}x.x  \mmember{}  Hom(l;l))



Date html generated: 2020_05_20-AM-08_23_50
Last ObjectModification: 2015_12_28-PM-02_03_38

Theory : lattices


Home Index