Nuprl Lemma : bounded-lattice-hom-equal
∀[l1,l2:BoundedLatticeStructure]. ∀[f,g:Hom(l1;l2)].
  f = g ∈ Hom(l1;l2) supposing ∀x:Point(l1). ((f x) = (g x) ∈ Point(l2))
Proof
Definitions occuring in Statement : 
bounded-lattice-hom: Hom(l1;l2)
, 
bounded-lattice-structure: BoundedLatticeStructure
, 
lattice-point: Point(l)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
bounded-lattice-hom: Hom(l1;l2)
, 
and: P ∧ Q
, 
lattice-hom: Hom(l1;l2)
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
lattice-point_wf, 
bounded-lattice-structure-subtype, 
iff_weakening_equal, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-0_wf, 
lattice-1_wf, 
all_wf, 
bounded-lattice-hom_wf, 
bounded-lattice-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
productElimination, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
sqequalRule, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
because_Cache, 
productEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[l1,l2:BoundedLatticeStructure].  \mforall{}[f,g:Hom(l1;l2)].    f  =  g  supposing  \mforall{}x:Point(l1).  ((f  x)  =  (g  x))
Date html generated:
2020_05_20-AM-08_24_53
Last ObjectModification:
2017_07_28-AM-09_12_39
Theory : lattices
Home
Index