Nuprl Lemma : distributive-lattice-dual-distrib2

[L:DistributiveLattice]. ∀[a,b,c:Point(L)].  (b ∧ c ∨ b ∨ a ∧ c ∨ a ∈ Point(L))


Proof




Definitions occuring in Statement :  distributive-lattice: DistributiveLattice lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T distributive-lattice: DistributiveLattice and: P ∧ Q lattice-axioms: lattice-axioms(l) squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf lattice-join_wf lattice-meet_wf lattice-point_wf lattice-structure_wf iff_weakening_equal distributive-lattice-dual-distrib distributive-lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality sqequalHypSubstitution setElimination thin rename productElimination applyEquality lambdaEquality imageElimination extract_by_obid isectElimination equalityTransitivity hypothesis equalitySymmetry universeEquality because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination independent_functionElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[L:DistributiveLattice].  \mforall{}[a,b,c:Point(L)].    (b  \mwedge{}  c  \mvee{}  a  =  b  \mvee{}  a  \mwedge{}  c  \mvee{}  a)



Date html generated: 2020_05_20-AM-08_25_50
Last ObjectModification: 2017_07_28-AM-09_12_59

Theory : lattices


Home Index