Nuprl Lemma : distributive-lattice-dual-distrib2
∀[L:DistributiveLattice]. ∀[a,b,c:Point(L)].  (b ∧ c ∨ a = b ∨ a ∧ c ∨ a ∈ Point(L))
Proof
Definitions occuring in Statement : 
distributive-lattice: DistributiveLattice
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
distributive-lattice: DistributiveLattice
, 
and: P ∧ Q
, 
lattice-axioms: lattice-axioms(l)
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
lattice-join_wf, 
lattice-meet_wf, 
lattice-point_wf, 
lattice-structure_wf, 
iff_weakening_equal, 
distributive-lattice-dual-distrib, 
distributive-lattice_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
extract_by_obid, 
isectElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[L:DistributiveLattice].  \mforall{}[a,b,c:Point(L)].    (b  \mwedge{}  c  \mvee{}  a  =  b  \mvee{}  a  \mwedge{}  c  \mvee{}  a)
Date html generated:
2020_05_20-AM-08_25_50
Last ObjectModification:
2017_07_28-AM-09_12_59
Theory : lattices
Home
Index