Nuprl Lemma : face-lattice_wf

[T:Type]. ∀[eq:EqDecider(T)].  (face-lattice(T;eq) ∈ BoundedDistributiveLattice)


Proof




Definitions occuring in Statement :  face-lattice: face-lattice(T;eq) bdd-distributive-lattice: BoundedDistributiveLattice deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-lattice: face-lattice(T;eq) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  free-dist-lattice-with-constraints_wf union-deq_wf face-lattice-constraints_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin unionEquality hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].    (face-lattice(T;eq)  \mmember{}  BoundedDistributiveLattice)



Date html generated: 2020_05_20-AM-08_50_41
Last ObjectModification: 2015_12_28-PM-01_57_39

Theory : lattices


Home Index