Nuprl Lemma : free-dl-generator_wf

[X:Type]. ∀[x:X].  (free-dl-generator(x) ∈ free-dl-type(X))


Proof




Definitions occuring in Statement :  free-dl-generator: free-dl-generator(x) free-dl-type: free-dl-type(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-dl-generator: free-dl-generator(x) subtype_rel: A ⊆B free-dl-type: free-dl-type(X) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  cons_wf list_wf nil_wf subtype_quotient dlattice-eq_wf dlattice-eq-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis applyEquality lambdaEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[x:X].    (free-dl-generator(x)  \mmember{}  free-dl-type(X))



Date html generated: 2020_05_20-AM-08_27_34
Last ObjectModification: 2017_01_22-PM-07_46_48

Theory : lattices


Home Index