Nuprl Lemma : lattice-le-order
∀l:Lattice. Order(Point(l);x,y.x ≤ y)
Proof
Definitions occuring in Statement : 
lattice-le: a ≤ b
, 
lattice: Lattice
, 
lattice-point: Point(l)
, 
order: Order(T;x,y.R[x; y])
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
order: Order(T;x,y.R[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
lattice: Lattice
, 
cand: A c∧ B
, 
trans: Trans(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
uimplies: b supposing a
, 
lattice-le: a ≤ b
Lemmas referenced : 
lattice-point_wf, 
lattice-le_wf, 
lattice_wf, 
lattice-le_weakening, 
lattice-le_transitivity, 
lattice_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
productElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}l:Lattice.  Order(Point(l);x,y.x  \mleq{}  y)
Date html generated:
2020_05_20-AM-08_25_27
Last ObjectModification:
2015_12_28-PM-02_03_01
Theory : lattices
Home
Index