Nuprl Lemma : dp-sep_wf

[d:DualPlanePrimitives]. ∀[x,y:Vec].  ((x y) ∈ ℙ)


Proof




Definitions occuring in Statement :  dp-sep: (x y) dp-vec: Vec dual-plane-primitives: DualPlanePrimitives uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dual-plane-primitives: DualPlanePrimitives record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt so_lambda: λ2x.t[x] so_apply: x[s] prop: dp-sep: (x y) dp-vec: Vec
Lemmas referenced :  subtype_rel_self record-select_wf top_wf istype-atom dp-vec_wf dual-plane-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesisEquality sqequalHypSubstitution dependentIntersectionElimination sqequalRule dependentIntersectionEqElimination thin hypothesis applyEquality tokenEquality instantiate extract_by_obid isectElimination universeEquality functionEquality cumulativity lambdaEquality_alt equalityTransitivity equalitySymmetry axiomEquality inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[d:DualPlanePrimitives].  \mforall{}[x,y:Vec].    ((x  \#  y)  \mmember{}  \mBbbP{})



Date html generated: 2020_05_20-AM-09_04_01
Last ObjectModification: 2019_11_27-PM-02_37_54

Theory : matrices


Home Index