Nuprl Lemma : dp-sep_wf
∀[d:DualPlanePrimitives]. ∀[x,y:Vec].  ((x # y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
dp-sep: (x # y)
, 
dp-vec: Vec
, 
dual-plane-primitives: DualPlanePrimitives
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dual-plane-primitives: DualPlanePrimitives
, 
record+: record+, 
record-select: r.x
, 
subtype_rel: A ⊆r B
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
dp-sep: (x # y)
, 
dp-vec: Vec
Lemmas referenced : 
subtype_rel_self, 
record-select_wf, 
top_wf, 
istype-atom, 
dp-vec_wf, 
dual-plane-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesisEquality, 
sqequalHypSubstitution, 
dependentIntersectionElimination, 
sqequalRule, 
dependentIntersectionEqElimination, 
thin, 
hypothesis, 
applyEquality, 
tokenEquality, 
instantiate, 
extract_by_obid, 
isectElimination, 
universeEquality, 
functionEquality, 
cumulativity, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[d:DualPlanePrimitives].  \mforall{}[x,y:Vec].    ((x  \#  y)  \mmember{}  \mBbbP{})
Date html generated:
2020_05_20-AM-09_04_01
Last ObjectModification:
2019_11_27-PM-02_37_54
Theory : matrices
Home
Index