Nuprl Lemma : matrix-plus-minus-left
∀[k,m:ℕ]. ∀[r:Rng]. ∀[N:Matrix(k;m;r)]. (-(N) + N = 0 ∈ Matrix(k;m;r))
Proof
Definitions occuring in Statement :
matrix-minus: -(M)
,
zero-matrix: 0
,
matrix-plus: M + N
,
matrix: Matrix(n;m;r)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
,
rng: Rng
Definitions unfolded in proof :
true: True
,
rng: Rng
,
nat: ℕ
,
matrix-ap: M[i,j]
,
mx: matrix(M[x; y])
,
matrix-plus: M + N
,
matrix-minus: -(M)
,
zero-matrix: 0
,
matrix: Matrix(n;m;r)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
squash: ↓T
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
and: P ∧ Q
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
rng_zero_wf,
matrix-ap_wf,
rng_minus_wf,
rng_car_wf,
nat_wf,
rng_wf,
matrix_wf,
int_seg_wf,
equal_wf,
squash_wf,
true_wf,
rng_plus_comm,
rng_plus_inv,
iff_weakening_equal
Rules used in proof :
applyEquality,
axiomEquality,
isect_memberEquality,
hypothesisEquality,
hypothesis,
because_Cache,
setElimination,
natural_numberEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
sqequalRule,
rename,
functionExtensionality,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
lambdaEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
universeEquality,
imageMemberEquality,
baseClosed,
productElimination,
independent_isectElimination,
independent_functionElimination
Latex:
\mforall{}[k,m:\mBbbN{}]. \mforall{}[r:Rng]. \mforall{}[N:Matrix(k;m;r)]. (-(N) + N = 0)
Date html generated:
2018_05_21-PM-09_35_11
Last ObjectModification:
2017_12_11-PM-00_29_38
Theory : matrices
Home
Index