Nuprl Lemma : matrix-plus-zero-right
∀[k,m:ℕ]. ∀[r:Rng]. ∀[N:Matrix(k;m;r)].  (N + 0 = N ∈ Matrix(k;m;r))
Proof
Definitions occuring in Statement : 
zero-matrix: 0
, 
matrix-plus: M + N
, 
matrix: Matrix(n;m;r)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
rng: Rng
Definitions unfolded in proof : 
true: True
, 
rng: Rng
, 
nat: ℕ
, 
matrix-ap: M[i,j]
, 
mx: matrix(M[x; y])
, 
matrix-plus: M + N
, 
zero-matrix: 0
, 
matrix: Matrix(n;m;r)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
matrix-ap_wf, 
rng_car_wf, 
nat_wf, 
rng_wf, 
matrix_wf, 
int_seg_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_plus_zero, 
iff_weakening_equal
Rules used in proof : 
axiomEquality, 
isect_memberEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
rename, 
functionExtensionality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
productElimination, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[k,m:\mBbbN{}].  \mforall{}[r:Rng].  \mforall{}[N:Matrix(k;m;r)].    (N  +  0  =  N)
Date html generated:
2018_05_21-PM-09_35_20
Last ObjectModification:
2017_12_11-PM-00_29_39
Theory : matrices
Home
Index