Nuprl Lemma : scalar-product-comm
∀[r:CRng]. ∀[n:ℕ]. ∀[a,b:ℕn ⟶ |r|].  ((a . b) = (b . a) ∈ |r|)
Proof
Definitions occuring in Statement : 
scalar-product: (a . b)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_car: |r|
Definitions unfolded in proof : 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
crng: CRng
, 
rng: Rng
, 
prop: ℙ
, 
squash: ↓T
, 
scalar-product: (a . b)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
crng_wf, 
nat_wf, 
iff_weakening_equal, 
rng_times_wf, 
infix_ap_wf, 
crng_times_comm, 
equal_wf, 
rng_car_wf, 
int_seg_wf, 
true_wf, 
squash_wf, 
rng_sum_wf
Rules used in proof : 
axiomEquality, 
isect_memberEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
functionExtensionality, 
universeEquality, 
sqequalRule, 
natural_numberEquality, 
because_Cache, 
intEquality, 
rename, 
setElimination, 
functionEquality, 
equalitySymmetry, 
hypothesis, 
equalityTransitivity, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
imageElimination, 
sqequalHypSubstitution, 
lambdaEquality, 
thin, 
applyEquality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbN{}n  {}\mrightarrow{}  |r|].    ((a  .  b)  =  (b  .  a))
Date html generated:
2018_05_21-PM-09_41_57
Last ObjectModification:
2017_12_18-PM-05_11_08
Theory : matrices
Home
Index