Nuprl Lemma : scalar-product-comm

[r:CRng]. ∀[n:ℕ]. ∀[a,b:ℕn ⟶ |r|].  ((a b) (b a) ∈ |r|)


Proof




Definitions occuring in Statement :  scalar-product: (a b) int_seg: {i..j-} nat: uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T crng: CRng rng_car: |r|
Definitions unfolded in proof :  so_apply: x[s] implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True so_lambda: λ2x.t[x] nat: crng: CRng rng: Rng prop: squash: T scalar-product: (a b) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  crng_wf nat_wf iff_weakening_equal rng_times_wf infix_ap_wf crng_times_comm equal_wf rng_car_wf int_seg_wf true_wf squash_wf rng_sum_wf
Rules used in proof :  axiomEquality isect_memberEquality independent_functionElimination productElimination independent_isectElimination baseClosed imageMemberEquality functionExtensionality universeEquality sqequalRule natural_numberEquality because_Cache intEquality rename setElimination functionEquality equalitySymmetry hypothesis equalityTransitivity hypothesisEquality isectElimination extract_by_obid imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:CRng].  \mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbN{}n  {}\mrightarrow{}  |r|].    ((a  .  b)  =  (b  .  a))



Date html generated: 2018_05_21-PM-09_41_57
Last ObjectModification: 2017_12_18-PM-05_11_08

Theory : matrices


Home Index