Nuprl Lemma : A-leftunit'
∀[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. ∀[T,S:Type]. ∀[x:T]. ∀[f:T ⟶ (A-map'(array-model(AType)) S)].
((A-bind'(array-model(AType)) (A-return'(array-model(AType)) x) f) = (f x) ∈ (A-map'(array-model(AType)) S))
Proof
Definitions occuring in Statement :
A-bind': A-bind'(AModel)
,
A-return': A-return'(AModel)
,
A-map': A-map'(AModel)
,
array-model: array-model(AType)
,
array: array{i:l}(Val;n)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
array-model: array-model(AType)
,
A-return': A-return'(AModel)
,
A-bind': A-bind'(AModel)
,
A-map': A-map'(AModel)
,
pi2: snd(t)
,
pi1: fst(t)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
squash: ↓T
,
prop: ℙ
,
true: True
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
equal_wf,
squash_wf,
true_wf,
M-map_wf,
array-monad'_wf,
M-leftunit,
iff_weakening_equal,
array_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
applyEquality,
thin,
lambdaEquality,
sqequalHypSubstitution,
imageElimination,
extract_by_obid,
isectElimination,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
universeEquality,
cumulativity,
functionExtensionality,
natural_numberEquality,
imageMemberEquality,
baseClosed,
independent_isectElimination,
productElimination,
independent_functionElimination,
because_Cache,
functionEquality,
isect_memberEquality,
axiomEquality
Latex:
\mforall{}[Val:Type]. \mforall{}[n:\mBbbN{}]. \mforall{}[AType:array\{i:l\}(Val;n)]. \mforall{}[T,S:Type]. \mforall{}[x:T].
\mforall{}[f:T {}\mrightarrow{} (A-map'(array-model(AType)) S)].
((A-bind'(array-model(AType)) (A-return'(array-model(AType)) x) f) = (f x))
Date html generated:
2017_10_01-AM-08_44_06
Last ObjectModification:
2017_07_26-PM-04_30_07
Theory : monads
Home
Index