Nuprl Lemma : A-leftunit'
∀[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. ∀[T,S:Type]. ∀[x:T]. ∀[f:T ⟶ (A-map'(array-model(AType)) S)].
  ((A-bind'(array-model(AType)) (A-return'(array-model(AType)) x) f) = (f x) ∈ (A-map'(array-model(AType)) S))
Proof
Definitions occuring in Statement : 
A-bind': A-bind'(AModel)
, 
A-return': A-return'(AModel)
, 
A-map': A-map'(AModel)
, 
array-model: array-model(AType)
, 
array: array{i:l}(Val;n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
array-model: array-model(AType)
, 
A-return': A-return'(AModel)
, 
A-bind': A-bind'(AModel)
, 
A-map': A-map'(AModel)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
M-map_wf, 
array-monad'_wf, 
M-leftunit, 
iff_weakening_equal, 
array_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
cumulativity, 
functionExtensionality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
because_Cache, 
functionEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].  \mforall{}[T,S:Type].  \mforall{}[x:T].
\mforall{}[f:T  {}\mrightarrow{}  (A-map'(array-model(AType))  S)].
    ((A-bind'(array-model(AType))  (A-return'(array-model(AType))  x)  f)  =  (f  x))
Date html generated:
2017_10_01-AM-08_44_06
Last ObjectModification:
2017_07_26-PM-04_30_07
Theory : monads
Home
Index