Nuprl Lemma : allowed-trivial-iff

[T:𝕌']. ∀[x:Provisional(T)]. ∀[X:ℙ].  (SqStable(X)  allowed(x) ⇐⇒ usquash(allowed(x) ∧ X) supposing X)


Proof




Definitions occuring in Statement :  allowed: allowed(x) provisional-type: Provisional(T) usquash: usquash(T) sq_stable: SqStable(P) uimplies: supposing a uall: [x:A]. B[x] prop: iff: ⇐⇒ Q implies:  Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: rev_implies:  Q cand: c∧ B squash: T
Lemmas referenced :  allowed_wf usquash_wf sq_stable_wf provisional-type_wf istype-universe squash-implies-usquash usquash-elim sq_stable__and sq_stable__allowed
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productEquality universeEquality instantiate independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination isect_memberEquality_alt because_Cache productElimination

Latex:
\mforall{}[T:\mBbbU{}'].  \mforall{}[x:Provisional(T)].  \mforall{}[X:\mBbbP{}].
    (SqStable(X)  {}\mRightarrow{}  allowed(x)  \mLeftarrow{}{}\mRightarrow{}  usquash(allowed(x)  \mwedge{}  X)  supposing  X)



Date html generated: 2020_05_20-AM-08_00_55
Last ObjectModification: 2020_05_17-PM-06_33_02

Theory : monads


Home Index