Nuprl Lemma : allowed-trivial-iff
∀[T:𝕌']. ∀[x:Provisional(T)]. ∀[X:ℙ].  (SqStable(X) 
⇒ allowed(x) 
⇐⇒ usquash(allowed(x) ∧ X) supposing X)
Proof
Definitions occuring in Statement : 
allowed: allowed(x)
, 
provisional-type: Provisional(T)
, 
usquash: usquash(T)
, 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
squash: ↓T
Lemmas referenced : 
allowed_wf, 
usquash_wf, 
sq_stable_wf, 
provisional-type_wf, 
istype-universe, 
squash-implies-usquash, 
usquash-elim, 
sq_stable__and, 
sq_stable__allowed
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productEquality, 
universeEquality, 
instantiate, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
isect_memberEquality_alt, 
because_Cache, 
productElimination
Latex:
\mforall{}[T:\mBbbU{}'].  \mforall{}[x:Provisional(T)].  \mforall{}[X:\mBbbP{}].
    (SqStable(X)  {}\mRightarrow{}  allowed(x)  \mLeftarrow{}{}\mRightarrow{}  usquash(allowed(x)  \mwedge{}  X)  supposing  X)
Date html generated:
2020_05_20-AM-08_00_55
Last ObjectModification:
2020_05_17-PM-06_33_02
Theory : monads
Home
Index