Nuprl Lemma : sq_stable__allowed
∀[T:𝕌']. ∀[x:Provisional(T)]. SqStable(allowed(x))
Proof
Definitions occuring in Statement :
allowed: allowed(x)
,
provisional-type: Provisional(T)
,
sq_stable: SqStable(P)
,
uall: ∀[x:A]. B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
sq_stable: SqStable(P)
,
implies: P
⇒ Q
,
member: t ∈ T
,
squash: ↓T
,
provisional-type: Provisional(T)
,
prop: ℙ
,
quotient: x,y:A//B[x; y]
,
and: P ∧ Q
,
uimplies: b supposing a
,
iff: P
⇐⇒ Q
,
all: ∀x:A. B[x]
,
pi1: fst(t)
,
rev_implies: P
⇐ Q
,
pi2: snd(t)
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
respects-equality: respects-equality(S;T)
,
allowed: allowed(x)
Lemmas referenced :
allowed_wf,
uimplies_subtype,
pi1_wf,
istype-universe,
subtype-respects-equality,
squash_wf,
provisional-type_wf,
member-usquash
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
lambdaFormation_alt,
introduction,
sqequalHypSubstitution,
imageElimination,
cut,
pointwiseFunctionalityForEquality,
extract_by_obid,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
hypothesis,
pertypeElimination,
promote_hyp,
productElimination,
productIsType,
equalityIstype,
universeIsType,
universeEquality,
isectIsType,
because_Cache,
sqequalBase,
equalitySymmetry,
functionIsType,
equalityTransitivity,
inhabitedIsType,
dependent_functionElimination,
independent_functionElimination,
isect_memberEquality_alt,
applyEquality,
instantiate,
lambdaEquality_alt,
cumulativity,
independent_isectElimination,
hyp_replacement,
dependent_set_memberEquality_alt,
independent_pairFormation,
applyLambdaEquality,
setElimination,
rename,
isectEquality,
Error :memTop
Latex:
\mforall{}[T:\mBbbU{}']. \mforall{}[x:Provisional(T)]. SqStable(allowed(x))
Date html generated:
2020_05_20-AM-08_00_53
Last ObjectModification:
2020_05_17-PM-06_31_55
Theory : monads
Home
Index